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53BP1, BRCA1, and the Choice between Recombination and End
Joining at DNA Double-Strand Breaks

James M. Daley, Patrick Sung

Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA

When DNA double-strand breaks occur, the cell cycle stage has a major influence on the choice of the repair pathway employed.
Specifically, nonhomologous end joining is the predominant mechanism used in the G, phase of the cell cycle, while homologous
recombination becomes fully activated in S phase. Studies over the past 2 decades have revealed that the aberrant joining of rep-
lication-associated breaks leads to catastrophic genome rearrangements, revealing an important role of DNA break repair path-
way choice in the preservation of genome integrity. 53BP1, first identified as a DNA damage checkpoint protein, and BRCAI, a
well-known breast cancer tumor suppressor, are at the center of this choice. Research on how these proteins function at the DNA
break site has advanced rapidly in the recent past. Here, we review what is known regarding how the repair pathway choice is
made, including the mechanisms that govern the recruitment of each critical factor, and how the cell transitions from end join-

ing in G, to homologous recombination in S/G,.

NA double-strand breaks (DSBs) are exceedingly dangerous

chromosomal lesions. Failure to accurately repair DSBs
can lead to gross chromosome rearrangements or mutations at
the break site, which can cause cell death, cell transformation,
and tumorigenesis. Two mechanistically distinct pathways have
evolved to eliminate DSBs from the genome: nonhomologous
DNA end joining (NHE]) and homologous recombination (HR),
both of which are conserved in all kingdoms of life. NHE] entails
the tethering of the broken DNA ends and their ligation (1). NHE]
is active throughout the cell cycle. While NHE] accurately repairs
“clean” DSBs whose ends are compatible and harbor undamaged
terminal nucleotides, it is also capable of joining mismatched ter-
mini or termini that harbor damaged, otherwise-unligatable ter-
minal nucleotides. In the latter case, joining is associated with
DNA sequence loss. Moreover, when ends from two different
chromosomes are joined, a chromosomal translocation ensues. In
HR, the intact sister chromatid is most often engaged as the infor-
mation donor. This process is normally accurate but requires that
cellsbein the S or G, phase of the cell cycle, when DNA replication
generates the sister chromatid to direct the repair process.

How DSB repair pathway choice is determined at the molecu-
lar level has been the subject of intense study for quite some time.
It has become clear that whether or not the DNA ends have un-
dergone extensive 5'-to-3" nucleolytic resection exerts a major
impact on this choice, such that ends that bear long 3" DNA tails
become destined for HR repair (2, 3). As first revealed in genetic
studies performed with the budding yeast Saccharomyces cerevi-
siae, three distinct nucleases function in the DSB end resection
process: the 5'-to-3" exonuclease I (Exol), the flap endonuclease
Dna2 in conjunction with the RecQ family helicase Sgs1 (BLM in
humans), and Mrell, part of the Mrell-Rad50-Xrs2 (MRX)
complex (MRE11-RAD50-NBS1, or MRN, in humans) (4, 5).
MRX is required for the initiation of resection near the DSB,
whereas Exol and Dna2 carry out long-range resection. There is
evidence of cross talk between these pathways, as MRN and BLM
both stimulate Exol in vitro (6, 7). The single-stranded DNA (ss-
DNA) binding protein RPA (replication protein A) coats the 3’
tails generated during resection, preventing the formation of sec-

1380 mch.asm.org

Molecular and Cellular Biology p. 1380-1388

ondary structures (8). RPA also stimulates Exol and directs DNA2
cleavage to the 5’ flap after unwinding by BLM (6, 9).

At DSBs with 5’ overhangs, resection eliminates the ability to
align the ends for precise NHE] (Fig. 1). DSBs with 3’ overhangs
retain base-pairing potential after resection begins, but resection
introduces extended gaps adjacent to the terminal nucleotides
(Fig. 1). These DNA gaps have been shown to strongly inhibit
NHE]J (10). A single-base gap reduces the NHE] efficiency of oth-
erwise-compatible overhangs severalfold, and accurate joining is
prevented when the gap reaches 3 or 4 nucleotides (10). Thus, the
onset of resection blocks restorative repair by NHE] and instead
favors DSB repair by HR. While accurate repair of the break by
recombination is the preferred outcome, an error-prone backup
pathway, referred to as the microhomology-mediated end joining
(MME]) pathway, can also restore the DNA duplex (11). This
pathway is mainly relevant when the ssDNA tails formed by resec-
tion fail to base pair fully, and microhomologies in the ssDNA tails
instead form a short DNA hybrid to initiate the joining process
(Fig. 1). MME]J leads to deletion of the intervening sequence and is
thus a highly mutagenic outcome.

The finding that resection can be inhibited by holding yeast
cells in G, or inhibiting cyclin-dependent kinase (CDK) activity
provided the first major clue into the mechanism by which path-
way choice is regulated (12, 13). Later work identified Sae2 (CtIP
in humans), an MRX/MRN interaction partner, as the critical
CDK target responsible for this phenomenon (14, 15). A model
has emerged in which CDK phosphorylates CtIP at the G,-S tran-
sition to activate resection. In Schizosaccharomyces pombe, peri-
odic expression of the CtIP homolog Ctp1 is also relevant for the
cell cycle-dependent regulation of resection (16), and this mech-
anism seems to be conserved in mammalian cells (17). A second
CDK target is the Dna2 nuclease, whose phosphorylation stimu-
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FIG 1 The effects of nucleolytic resection on NHE] of DNA ends that bear 5" or 3" overhangs. With ends that harbor 3" overhangs (top left), NHE] becomes
inefficient once the gap size stemming from resection becomes 2 nucleotides or greater. Accurate NHE]J of ends with 5" overhangs (top right) is eliminated by
resection. After resection, repair normally proceeds by HR (bottom right). Occasionally, and especially when a homologous template is unavailable, deletion-

prone MME] occurs (bottom left).

lates its recruitment to DSBs (18). The above findings suggested a
straightforward model in which a phospho-dependent switch at
the G,-S transition turns on resection. However, further investi-
gations have revealed much greater complexity in the determina-
tion of DSB repair pathway choice, which involves DNA damage
checkpoint proteins, the breast cancer susceptibility gene BRCAL,
telomeric factors, ubiquitylation and SUMOylation cascades
mediated by RING finger proteins, and a variety of histone
modifications. While the basic mechanisms of HR and NHE]
are conserved, many of the mammalian factors that have been
characterized in pathway choice do not have a clear ortholog in
S. cerevisiae, suggesting that this aspect of the DNA damage re-
sponse has diverged considerably in higher organisms. Indeed,
blocking of resection in the G, cell cycle phase seems to be more
robust in mammalian cells than in yeast, as residual resection can
occur during G, arrest in yeast (19, 20). Here, we review these
findings and strive to integrate them in a mechanistic model.

REGULATION OF THE ONSET OF RESECTION BY 53BP1 AND
BRCA1

A series of studies published in 2010 implicated 53BP1, a target of the
ATM kinase that forms nuclear foci upon DSB induction, and the
tumor suppressor BRCA1 in DNA end resection control. 53BP1 was
shown to negatively regulate resection in G, (21). Importantly,
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BRCA1 promotes the removal of 53BP1 in S phase to allow resection
(22). Consequently, in cells lacking BRCALI, resection is not upregu-
lated in S phase and inappropriate NHE]J occurs at replication-asso-
ciated DSBs, leading to gross chromosomal rearrangements. In mice,
deletion of 53BP1 suppresses the embryonic lethality and prevents
the chromosomal rearrangements seen in BRCA1~/"~ animals, em-
phasizing the importance of BRCA1-dependent removal of 53BP1 to
facilitate the transition from NHE]J to HR (22-25).

The above findings raise new questions. Numerous proteins
have been found that colocalize with y-H2AX foci, which mark
DNA damage sites. Some of these factors function upstream of
both 53BP1 and BRCAL recruitment, and how they promote or
suppress either of the two repair pathways is the subject of ongo-
ing investigations. What role do chromatin modifications play in
recruitment of key factors? What is the molecular switch that ac-
tivates BRCA1’s ability to remove 53BP1 exclusively in S/G,?
Moreover, what is the mechanism by which 53BP1 blocks the
resection nucleases? Below, we analyze recent findings that help
address these questions.

UPSTREAM ACTION OF RNF8 AND RNF168 UBIQUITIN
LIGASES

ATM, MDCI, the MRN complex, and the RING finger E3 ubig-
uitin ligases RNF8 and RNF168 are among the earliest factors
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FIG 2 Histone modifications involved in 53BP1 or BRCAI1 recruitment to
DSBs. Proteins that add or remove each modification are indicated by arrows.
Dotted lines indicate protein-protein interactions. A question mark indicates a
relationship that has been documented in the literature but whose mechanism
is unknown.

found in DNA damage foci (26). 53BP1 and BRCAL1 appear later,
and their recruitment is dependent on the aforementioned up-
stream factors (27). RNF8 is recruited via an interaction between
its FHA domain and phosphosites on MDC1 (27, 28). Acting with
its partner E2 enzyme UBC13 (29), RNF8 ubiquitinates y-H2AX
(28) and H2A (27). This, along with other chromatin modifica-
tions that occur near the DSBs, is summarized in Fig. 2. RNF168 is
then recruited, which also partners with UBC13 and further prop-
agates the ubiquitination of histone y-H2AX and of lysines 13 and
15 of histone H2A (30, 31). It should be noted that RNF8 and
RNF168 form K63-linked ubiquitin chains which, unlike K48-
linked chains, do not lead to protein degradation by the protea-
some. Instead, the ubiquitinated targets act as recruitment plat-
forms for downstream factors, which will be discussed in detail
below. RNF168 recruitment is partially dependent on RNF111
and UBE2M, which are E3 and E2 enzymes, respectively, that con-
jugate the ubiquitin-like protein NEDDS8 to a cluster of lysine
residues on the N terminus of histone H4 (32). RNF168 physically
interacts with “polyneddylated” H4, which is thought to be crucial
for its DSB recruitment (32).

Two deubiquitinating enzymes (DUBs), USP34 and OTUBI,
regulate the level of RNF168 and the activity of the UBC13-
RNF168 complex, respectively. The level of RNF168 in cells is
controlled by its ubiquitin-dependent proteolysis. USP34 en-
hances the abundance of RNF168 by deubiquitinating it (33). Ac-
cordingly, cells deficient in USP34 are unable to mount DNA
damage-induced 53BP1 and BRCAI1 foci (33). In this regard,
USP34 acts as a positive regulator of RNF168. OTUBI, on the
other hand, negatively regulates RNF168 activity, although the
mechanism is, surprisingly, independent of its DUB activity (34,
35). OTUBI physically interacts with and attenuates the ubiqui-
tin-conjugating activity of UBC13, the E2 partner for both RNF8
and RNF168. While OTUBI restricts the activity of both UBC13-
RNF8 and UBCI13-RNF168 in vitro, only RNF168-dependent
events seem to be affected in vivo. The end result is that OTUB1

1382 mch.asm.org

negatively regulates HR. Its depletion alleviates the HR defect seen
in cells treated with an ATM inhibitor, and OTUBI overexpres-
sion inhibits HR (35). Finally, RNF168 activity is kept in check by
the E3 ubiquitin ligases TRIP12 and UBR5, which prevent histone
ubiquitination from spreading beyond the region surrounding the
DSB (36).

Recently, RNF168 has also been shown to interact with the A
and B isoforms of the E2 ubiquitin-conjugating enzyme RAD6
(37). These are orthologs of yeast Rad6, which helps mediate
postreplication DNA repair, proteolysis via the N-end rule path-
way, and other processes (38). Both RAD6 isoforms are required
for 53BP1 and BRCAI recruitment to DSBs (37). Liu et al. (37)
implicated the RAD6A/B-RNF168 complexes in ubiquitination of
the linker histone H1.2. However, the biological relevance of H1.2
ubiquitination remains to be established. It seems likely that other
proteins are targeted by ubiquitination during the DNA damage
response, and further work will be needed to identify and charac-
terize the contribution of novel targets.

Besides ubiquitination, SUMOylation also plays a role in the
RNF8-RNF168 pathway. SUMO, UBC9 (the SUMO E2-conjugat-
ing enzyme), and the SUMO ligases PIAS1 and PIAS4 all localize
to DNA damage, and the recruitment of both 53BP1 and BRCA1
requires PIAS1 and PIAS4 (39, 40). While RNF8 localization oc-
curs efficiently in the absence of either PIAS protein, PIAS4 is
required for RNF168 localization and establishment of H2A ubiq-
uitin adducts (39). While these results identify the step in the
cascade where PIAS4 acts, it is unclear where PIAS1 functions.
How PIAS1 and PIAS4 are recruited to DNA damage is also un-
known, beyond the requirement of MDCI for their localization
(39). BRCALI and 53BP1 have both been identified as likely PIAS1/
PIAS4 targets, but how SUMOylation affects the properties of
these factors is not yet known (39, 40). Given that SUMOylation
affects H2A ubiquitination, an event upstream of 53BP1 and
BRCAI recruitment, there are likely other SUMOylation targets
that remain to be identified.

THE RAP80 COMPLEX AND RNF20/RNF40-DEPENDENT
RECRUITMENT OF BRCA1

Ubiquitination of H2A by RNF8 and RNF168 is thought to pro-
vide a recruitment platform for RAP80 and its associated proteins,
BRCC36, Abraxas, MERIT40, and BRCC45 (27, 41-46). RAP80
directly interacts with ubiquitin and presumably with ubiquiti-
nated H2A, thereby nucleating the assembly of a higher-order
complex that harbors the aforementioned partner proteins (Fig.
2) (42, 44, 45). All members of the RAP80 complex are required
for each other’s stability and for the optimal recruitment of
BRCA1 to DSBs, which is contingent upon its direct interaction
with Abraxas (41, 43, 45). BRCC36 is a DUB that specifically tar-
gets K63-linked ubiquitin chains (47). The ubiquitin content of
v-H2AX foci peaks early and then it decreases in a manner that is
dependent on the RAP80 protein complex, suggesting that the
latter counteracts the actions of RNF8 and RNF168 (47). While
loss of RAP80 reduces BRCA1 foci, it, paradoxically, increases
long-range resection as well (48). A possible explanation is that
deubiquitination of H2A affects the resection nucleases differ-
ently, e.g., stimulating MRN-dependent resection near the DSB
but negatively regulating long-range resection by BLM-DNA2
and/or EXO1. This is an important topic that should be addressed.

It has been suggested that removal of K63-linked Ub chains
from H2A by the RAP80 complex is part of an intricate process
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that helps convert them to K6-linked chains catalyzed by the E3-
ubiquitin ligase activity of the BRCAI-BARD1 complex (41).
Consistent with this idea, RAP80 has affinity for K63- and K6-
linked but not K48-linked ubiquitin chains (44). However, a re-
cent report showed that a BRCA1 RING domain mutant that was
defective in E3 ligase activity supported resection at the wild-type
level (49). This study revealed that, if BRCA1 does indeed form
Ké6-linked chains at DSB sites, they are dispensable for efficient
resection.

The RING finger E3 ubiquitin ligases RNF20 and RNF40 also
function upstream of BRCA1 recruitment, but the mechanism is
less clear. These ligases modify histone H2B on lysines 120 and 125
(Fig. 2) (50). RNF20 knockdown causes a delay in the recruitment
of the general recombinase RAD51 and its partner proteins to
DNA damage, and an H2B point mutant that cannot be ubiquiti-
nated exerts a stronger effect in this regard (50, 51). NBS1, an
integral component of the MRN complex, interacts directly with
RNF20, and this interaction is required for resection (51). How-
ever, H2B ubiquitination occurs efficiently in the absence of
MRN, arguing against an involvement of MRN in RNF20-medi-
ated H2B modification (51). RNF20 is also required for methyl-
ation oflysine 4 in histone H3 (51). This methylation mark, along-
side the deacetylation of lysine 56 in H3 by SIRT®6, leads to
recruitment of the SNF2h nucleosome remodeler, which is re-
quired for optimal resection efficiency (51, 52). Intriguingly, the
RNF20 resection defect can be overcome by treating cells with
chloroquine, which leads to chromatin relaxation (51). Thus,
RNF20 and RNF40 may promote histone eviction, an important step,
considering that nucleosomes pose an obstacle to resection nucleases,
as revealed in biochemical reconstitution studies (53). Indeed, chro-
matin immunoprecipitation experiments have yielded results sug-
gesting that histones are removed near the DSB site within a time
frame consistent with resection (54, 55). BRCA1 recruitment is also
reduced in the absence of HP1, which interacts with H3 methylated
on K9 (56). Further work is needed to determine the mechanism by
which HP1 influences BRCALI activity.

RECRUITMENT OF 53BP1

How 53BP1 is recruited to DSB sites has been debated. While it has
been reported that 53BP1 recruitment requires its interaction with
the tandem BRCT domains of MDCI1 (57, 58), other studies have
found the proposed MDCI interaction domain to be dispensable
in this regard (59, 60). 53BP1 also interacts with histone H4 dim-
ethylated on lysine 20 (H4K20me2) via its Tudor domain (Fig. 2),
but early studies did not detect an increase in H4K20me2 upon
DNA damage (61). This suggested a model in which 53BP1 is
initially recruited by MDCI1 and is then retained in the chromatin
region surrounding the break through an interaction with
H4K20me2, which is presumed to be exposed following damage
(61). This model is consistent with recent reports implicating PR-
SET7/SETDS8 and SUV420 in 53BP1 recruitment (62, 63). An al-
ternate model has been proposed in which the methyltransferase
MMSET promotes a localized increase in H4K20me2 near the
DSB site (64). Like 53BP1, MMSET is phosphorylated by ATM
upon the occurrence of DNA damage and appears to be recruited
via an interaction with the BRCT domains of MDC1 (64). Further
work will be needed to resolve conflicting data in this area. 53BP1
also harbors a C-terminal ubiquitin-interacting motif that recog-
nizes histone H2A ubiquitinated on K15, a modification that is
catalyzed by RNF168 (Fig. 2) (59). This finding helped explain
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why RNF8 and RNF168 are required for 53BP1 recruitment, but
the RAP80 complex, which functions immediately downstream, is
not (47). Furthermore, acetylation of histone H4 on lysine 16 by
TIP60 has been shown to reduce the affinity of 53BP1 for
H4K20me2 (Fig. 2) (65). Thus, three separate histone modifica-
tions—methylation, ubiquitination, and acetylation—are in-
volved in regulating the recruitment and retention of 53BP1 (59).

Additional layers of regulation are afforded by two proteins,
JMJD2A and L3MBTLI, which compete with 53BP1 for bind-
ing to H4K20me2 (Fig. 2) (66—68). JMJD2A interacts with
H4K20me?2 via its tandem Tudor domains, whereas LAMBTL1
utilizes an MBT domain to accomplish this feat. The RNF8-
RNF168 pathway also has a role in the removal of JMJD2A and
L3MBTL1 from DSB regions. Specifically, RNF8 and RNF168
directly ubiquitinate JMJD2A to trigger its degradation (68),
and RNF168 also ubiquitinates VCP, which has ATPase activ-
ity, causing it to relocalize to chromatin, where it removes
L3MBTL1 (66). The proteasome-associated DUB POH]1 antag-
onizes RNF8-RNF168 activity on JMJD2A, promoting the sta-
bility of the latter and attenuating 53BP1 recruitment (67).
POHLI likely targets other proteins too, as it has been impli-
cated in RAD51 accumulation, a process that is independent of
(and is, in fact, antagonized by) 53BP1 (67). Advanced micros-
copy has shown that, as cells transition into S/G,, POH1 pro-
motes the removal of RAP80 from DSB sites (49). As discussed
above, the recruitment of RAP80 is dependent on RNF8/
RNF168-mediated ubiquitination of histone H2A. Interest-
ingly, the DUB activity of BRCC36, an integral component of
the RAP80 complex, counteracts RNF168 to help achieve an
equilibrium state of ubiquitination. An attractive model is that
POHI1 removes the initial ubiquitin conjugated to H2A, termi-
nating the chain extension/reduction cycle maintained by
RNF168 and RAP8O (Fig. 2).

The BLM helicase has recently also been implicated in 53BP1
recruitment. Cells from Bloom syndrome patients fail to recruit
53BP1 to DNA damage sites (69). BLM-deficient cells also show
evidence of increased resection during microhomology-mediated
end joining, which is surprising given that BLM helps catalyze one
branch of long-range resection (69). These results suggest a dual
role for BLM: an early antiresection function with 53BP1 and a late
proresection role with DNA2 after 53BP1 has been removed. Sep-
aration-of-function BLM mutants will be critical in further char-
acterizing this dichotomy.

RIF1 AND PTIP, KEY EFFECTORS OF 53BP1

The N terminus of 53BP1 is phosphorylated by ATM after DNA
damage, but the phosphorylation sites are not required for 53BP1
localization to nuclear foci. Instead, these sites are necessary for
resection attenuation, suggesting that phosphorylation of 53BP1
is important for the recruitment of effector molecules (70). A
series of papers published in 2013 identified RIF1 as a 53BP1 ef-
fector (Fig. 3A) (71-74). Like 53BP1, RIF1 is required for NHE]
and is removed from foci in S/G, in a BRCA1- and CtIP-depen-
dent manner. 53BP1 and RIF1 coimmunoprecipitate from cell
extracts (73), but a direct interaction in vitro with purified pro-
teins has not yet been reported, so it remains possible that an
adapter links these two proteins together.

The observation that loss of RIF1 only partially restores HR in
cells lacking BRCA1 (75) suggested that another protein may be
involved in the attenuation of HR to favor NHEJ. Indeed, PTIP
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FIG 3 Model for DSB occupancy in G, and S/G,. (A) In G, cells, 53BP1 is phosphorylated by ATM and becomes localized at the break. RIF1 and PTIP are
recruited in a phospho-dependent manner and block resection via an unknown mechanism. BRCAL1 is bound to Ku but in a quantity so low that they do not
appear as visual foci. (B) In S/G,, CtIP is phosphorylated by CDK, inducing the formation of a complex with BRCA1 and MRN. This complex displaces 53BP1
and initiates resection. Ku may be removed by coordinated endo- and exonuclease activities that are initiated from a nick in a manner analogous to the postulated

mechanism of Spoll removal.

has recently been identified as an additional 53BP1 effector (76).
Using its tandem BRCT domains, PTIP interacts directly with
53BP1 in a manner that is dependent on the ATM-mediated phos-
phorylation of serine 25 of the latter (76). Like RIF1, loss of PTIP
restores RPA foci in BRCA1-deficient cells, indicating that PTIP
also plays a role in blocking resection (76). PTIP has also been
reported to bind y-H2AX, but the functional significance of this is
not yet clear (77).

The mechanisms by which RIF1 and PTIP prevent resection
and promote NHE] have not yet been elucidated. However, it is
known that RIF1 interacts with the BLM helicase and is required
for recruitment of BLM to foci (75, 78). Conceivably, RIF1 may
inhibit the ability of BLM to unwind DNA for resection by DNA2.
Or, RIF1 and/or PTIP may stabilize NHE] proteins, such as the Ku
heterodimer on DNA ends, which would prevent access of the
ends for the resection nucleases (see below). The DNA end struc-
ture may help determine the activities of RIF1 and PTIP. A key
difference between the two effectors is that PTIP seems specific to
the inappropriate S-phase NHE] events that characterize cells
lacking BRCA1, while RIF1 is additionally required for class
switch recombination, a specialized form of NHE] that occurs at
DSBs generated by cytosine deamination in developing B cells.
Interestingly, V(D)J recombination, a form of NHE] that joins
hairpin-capped ends during lymphocyte development, is unaf-
fected by the loss of RIF1 (71) but is defective in cells lacking PTIP
(79). Also, NHE] of blunt-ended leading-strand telomeres is more
dependent on 53BP1 than lagging-strand telomeres, which have
3" overhangs (80). Uncovering the mechanisms of resection inhi-
bition by RIF1 and PTIP will be a top priority in the near future.

THE G,-S TRANSITION: CtIP PHOSPHORYLATION AND
REMOVAL OF 53BP1 BY BRCA1

The mechanism by which BRCA1 helps mediate 53BP1 removal as
cells transition from G, into S phase is unclear. However, it is
important to note that the loss of BRCAL1 leads to the DSB recruit-
ment of 53BP1 in G, (73), suggesting that the 53BP1 recruitment
platform remains intact in S/G, but is somehow masked by
BRCALI. Similarly, 53BP1 knockdown leads to ectopic BRCA1
nuclear fociin G, (73), indicating that the potential for BRCA1
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recruitment exists in G, but is blocked in a 53BP1-dependent
manner.

How, then, do cells switch from pro-NHE] 53BP1 in G, to
proresection BRCA1 in §/G,? Existing evidence hints at CtIP as
the key mediator of this switch. CtIP phosphorylation by CDK
is required for the initiation of resection in S phase (81). A
G,-specific complex containing CtIP, MRN, and BRCA1 has
been reported (82, 83). CDK activity is required for the assem-
bly of this higher-order complex (82). In a unified model, for-
mation of the CtIP-MRN-BRCA1 complex triggers 53BP1-
RIF1 removal and resection initiation (Fig. 3B). The finding
that RIF1 could not be removed from foci in a CtIP phosphor-
ylation site mutant is certainly consistent with this idea (73).
Depletion of 53BP1 or RIF1 restores resection in BRCA1-defi-
cient cells but not in cells lacking CtIP (34). These results reveal
that CtIP has other functions beyond 53BP1-RIF1 removal (81)
and that removal of 53BP1-RIF1 is the critical function of
BRCA1 inresection. The observation that phosphorylated CtIP
is ubiquitinated by BRCAL led to the suggestion that this CtIP
modification promotes resection (84). However, the recent
finding that a BRCA1 RING domain mutant is still competent
for resection casts doubt on models in which ubiquitination of
downstream targets by BRCA1 is important for 53BP1 removal
(49). Instead, 53BP1 displacement seems to be a separate activ-
ity of BRCA1, with the E3 ubiquitin ligase activity provided by
RNF8 and RNF168 being most relevant to resection.

The observation that BRCA1 foci are impaired but not abol-
ished in the absence of the RAP80 complex indicates that there
is another means of BRCAI recruitment independent of the
BRCAL1-Abraxas interaction (41, 43, 48, 85). Specifically, the FHA
and BRCT domains of NBSI interact with MDC1 that has been
phosphorylated by casein kinase 2, and this interaction could be
sufficient to tether the BRCA1-CtIP-MRN ensemble to the dam-
age site when the RAP80 complex is missing (86).

Evidence from yeast has identified the chromatin remodeler
Fun30 (SMARCADI in humans) as another possible player in
53BP1 removal (87-89). Fun30 is especially important for resec-
tion when Rad9, the yeast ortholog of 53BP1, is present (87). It
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will be important to investigate genetic interactions between
SMARCADI1 and members of the 53BP1-BRCA1 pathway.

REMOVAL OF Ku FROM DSB ENDS

Ku is a conserved, toroidal heterodimeric molecule consisting
of two subunits, Ku70 and Ku80. It is abundant in the nucleus
and has high affinity for DNA ends. The engagement of DNA
ends by Ku represents the key first step in NHE] (90). Genetic
experiments in yeast have shown that Ku occludes DNA ends
from Exol. Ku and MRX/MRN are among the first proteins
recruited to DSBs (91, 92). Importantly, the MRX nuclease
activity and Sae2 (orthologous to CtIP) function in conjunc-
tion to remove Ku (92-95). Insights into how the MRX nu-
clease might release Ku from DNA ends have emanated from
studies on meiotic recombination initiation. Early on in the
meiotic program, the topoisomerase-like protein Spoll acts in
a genome-wide fashion to introduce DSBs into chromosomes
to trigger HR. This serves to tie homologs together to prepare
them for segregation in the first meiotic division. After medi-
ating DNA strand breakage, Spol1 remains covalently bound
to the DSB ends. A plausible model for Spol1 removal involves
endonucleolytic incision of the DNA adjacent to the end by the
MRX complex, followed by bidirectional exonucleolytic diges-
tion from the nick, with MRX acting 3’ to 5 (toward the break
end) and Exol or Dna2/BLM performing long-range 5'-to-3’
resection (96). The use of small-molecule inhibitors of MRN
endo- and exonuclease activities has provided support for a
similar model at mitotic DSBs, where Spo11 is absent but Ku is
likely to be bound (97). Whether or not the human MRN com-
plex can overcome resection inhibition by Ku in a manner
analogous to Spol1 is being addressed by different groups (98,
99). It is also unclear whether Ku exerts as much of an inhibi-
tory effect on resection in mammalian cells as it does in yeast
(24).

The identification of an interaction between BRCAI and Ku
provided support for a mechanism by which MRN, in complex
with BRCA1 and phospho-CtIP, mediates Ku removal (Fig. 3B)
(100). More recent results have shown that the BRCA1-Ku inter-
action is specific to the G, phase, however, and is important for
NHE] fidelity (101). These results reveal that BRCA1 is in fact
present at the DSB site during G,, even though it does not form
microscopically visible foci until S/G,. It will be critically impor-
tant to determine whether the Ku-interacting form of BRCA1 is
part of the aforementioned complex with MRN and CtIP or
whether separate complexes that fulfill different functions exist. It
is possible that BRCA1 associates only with Ku in G, but forms a
distinct complex with MRN and CtIP upon entry into S phase in
order to activate the MRN nuclease activity to initiate resection.
The N terminus of BRCA1 interacts with both Ku and Nbs1, but
mutants differentially affected for either interaction are not yet
available (82, 100, 101). Whether the MRN nuclease activity is
required for Ku removal in mammalian cells remains an open
question, but recent advances in assessing Ku localization should
allow this important experiment to be done (102).

Another possibility is that BRCAI, in a manner analogous to
53BP1, functions through effector molecules to promote resec-
tion. One candidate for such a factor is the telomere protein TRF1,
which has recently been shown to localize to foci downstream of
BRCAL to promote resection (103). Alleles that separate the telo-
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meric function of TRF1 from this resection role will be beneficial
for the further characterization of this factor in resection.

CONCLUDING REMARKS

In Escherichia coli, the RecBCD complex, which harbors both he-
licase and nuclease activities, is the major protein machine that
mediates resection. An early assumption was that eukaryotes em-
ploy a similar compact, efficient resection enzyme ensemble. The
failure of early radiation sensitivity screens in yeast to identify
“the” resection nuclease was a clue that resection is a great deal
more complicated in eukaryotes. It is fair to say that no one antic-
ipated the level of complexity that has been uncovered to date,
though. Besides the involvement of three distinct nucleases, layers
upon layers of intricate regulation have been identified in regard
to making the correct choice between NHE] and HR.
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